Analisis Algoritma Dbscan Dalam Menentukan Parameter Epsilon Pada Clustering Data Numerik

Fahmi Izhari

Abstract


Algoritma DBSCAN (Density-Based Spatial Clustering of Applications with Noise) merupakan salah satu algoritma clustering yang berbasis numerik, pada algoritma ini digunakan data numerik sebagai pengujiannya. Algoritma DBSCAN (Density-Based Spatial Clustering of Applications with Noise) memiliki kelemahan yaitu sulitnya menentukan nilai Epsilon yang sesuai agar diperoleh hasil clustering yang baik. Pada algoritma DBSCAN (Density-Based Spatial Clustering of Applications with Noise), nilai epsilon dihitung berdasarkan banyak data dari keseluruhan data yang dijui. Pada penelitian ini dilakukan modifikasi terhadap algoritma DBSCAN (Density-Based Spatial Clustering of Applications with Noise) dengan melakukan penentuan nilai  epsilon , hasil yang diperoleh pada penelitian nilai Euclidean Distance yang diperoleh lebih baik bila dibandingkan dengan hasil yang diperoleh dari algoritma algoritma DBSCAN (Density-Based Spatial Clustering of Applications with Noise) biasa.


Kata Kunci: DBSCAN, Clustering, Euclidean Distanc, Epsilon.


Full Text:

PDF

References


Aranganayagi, S & Thangavel, T. 2007. Clustering Categorical Data using Silhouette Coefficient as a Relocating Measure. Proceedings of 2007 Internasional Conferenceon Computational Intelligenceand Multimedia Aplication. pp.13-17

Cui, X & Wang, F. 2015. An Improved Method for K-Means Clustering. Proceedings of 2015 International Conferenceon Computational Intelligence and Communication Networks (CICN). pp.756-759

Ester, Martin, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, A Density-Based Algorithm for Discovering Clusters, 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96), 1996

Fayyad, U., Shapiro, G.P & Smyth, P. 1996. From Data Mining to Knowledge Discovery in Database. AI Magazine: pp. 37-53

Glory H. Shah, C. K. Bhensdadia, Amit P. Ganatra. 2012. An Empirical Evaluation of Density-Based Clustering Techniques. International Journal of Soft Computing and Engineering (IJSCE)

Gorunescu, F. 2011. Data Mining : Concepts, Models and Techniques. Springer: Berlin.

Gothai, E & Balasubramanie, P. 2010. Performance Evaluation of Hierarchical Clustering Algortihms. Proceedings of The Internasional Conference on Communication and Computational Intelligence - 2010. pp. 457-460.

Han, J. & Kamber, M. 2006. Data Mining: Concepts and Techniques. 2nd Edition. Elsevier: San Francisco.

MacQueen, J. 1967. Some Methods for Classification and Analysis of Multivariate Statistics and Probability. Universityof California Press, Berkeley. California.

Manisha Naik Gaonkar & Kedar Sawant. 2012. AutoEpsDBSCAN : DBSCAN with Eps Automatic for Large Dataset. Goa College of Engineering, Computer Department, Ponda-Goa, Goa College of Engineering, Computer Department, Ponda-Goa.

Nisha & Kaur. P.J. 2015. Cluster Quality Based Performance Evaluation of Hierarchical Clustering Method. Proceedings of 2015 1st Internatinal Conference on Next Computing Technologies. pp. 649-653.

Poteras, C.M., Mihӑescu, M.C. & Mocanu, M. 2014. An optimized version of the kmeans clustering algorithm. Proceedings of the 2014 Federated Conference on Computer Science and Information Systems, pp. 695–699.

Rokach, L & Maimon. O. 2005. Data Mining and Knowledge Discovery Handbook. Springer: Tel Aviv.

Tan, P.N., Steinbach, M & Kumar, V. 2006, Introduction to Data Mining (Vol. 1), Pearson Addison Wesley: Boston.

Xiaojuan Hu1, Lei Liu1, Ningjia Qiu2, Di Yang2 and Meng Li3. 2017. A MapReduce-based improvement algorithm for DBSCAN. Journal of Algorithms & Computational Technology


Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Seminar Nasional Teknologi Komputer & Sains (SAINTEKS)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.